New and Emerging Treatments in Acute Myeloid Leukemia

Anand A. Patel, MD
Assistant Professor of Medicine
Director, Inpatient Leukemia Service
University of Chicago
LRF New and Emerging Treatments Conference
Disclosures

Research Funding: Celgene/BMS, Agios/Servier, Pfizer

I will designate FDA-approved drugs for disease conditions and drugs that are under clinical investigation
Objectives

• Provide a general overview of acute myeloid leukemia (AML)

• Review current diagnostic workup and treatment approaches in AML

• Discuss new management strategies that are being investigated in AML
Acute Myeloid Leukemia (AML)

- Most common form of acute leukemia in adults
- ~20,000 new diagnoses and ~10,000 deaths on a yearly basis
- Median age of diagnosis: 65 years old
AML Diagnosis and Characterization

- Demonstration of 20% or more myeloid blasts on peripheral blood smear OR bone marrow biopsy
 - Common additional testing includes cytogenetics (analysis of chromosomes), mutational testing, and consideration for testing of hereditary cancer syndromes

- **De novo AML**: AML diagnosed without a previous diagnosis of hematologic disorder or prior exposure to cytotoxic drugs and/or radiation therapy

- **Secondary AML (sAML)**: AML diagnosed in a patient with a pre-existing hematologic disorder such as myelodysplastic syndrome (MDS) or myeloproliferative neoplasm (MPN)

- **Therapy-related AML (t-AML)**: AML diagnosed in a patient previously treated with cytotoxic therapy or radiation therapy

WHO 2016 Criteria; Soulier, Blood 2020
Standard Treatment Options pre-2017

- Intensive Induction Chemotherapy
 - Examples: Cytarabine + anthracycline (“7+3”), FLAG + Idarubicin

- Non-intensive treatment approaches
 - Examples: Azacitidine, Decitabine, Low-dose cytarabine

- Supportive care
FDA-approved Treatment Options in the Current Era

Combined with induction therapy

Midostaurin
FLT3 inhibitor
28-April-2017

Typically combined with induction therapy

Daunorubicin - Cytarabine
Liposomal Chemotherapy
03-August-2017

Approved for secondary AML

Gemutuzumab Ozogamicin
Anti-CD3 antibody/drug conjugate
01-September-2017

Utilized in non-intensive approaches

Venetoclax
BCL-2 Inhibitor
21-November-2018

Ivosidenib
IDH-1 Inhibitor
02-May-2019

Oral
Azacitidine
Nucleoside analogue
01-September-2020

Glasdegib
Hedgehog Inhibitor
21-November-2018

Maintenance after consolidation

Enasidenib
IDH-2 Inhibitor
01-August-2017

Ivosidenib
IDH-1 Inhibitor
20-July-2018

Gilteitinib
FLT3 inhibitor
28-November-2018

Newly diagnosed

Relapsed / Refractory
What Factors Determine Initial AML Treatment?

- Cytogenetic and Molecular Characteristics of disease
- Other medical conditions a patient may have
- Patient input/preferences!
Treatment Approach in Newly-Diagnosed AML
disease and patient characteristics
consideration for clinical trials

Appropriate for intensive chemotherapy
- t-AML or AML with myelodysplasia-related changes
 - CPX-351
 - 7+3+ gemtuzumab ozogamicin
 - 7+3+midostaurin
- core-binding factor AML
- FLT3 mutation
 - 7+3
- other AML
 - CPX-351
 - 7+3+midostaurin
 - 7+3
 - ivosidenib or hypomethylating agent + venetoclax
 - hypomethylating agent + venetoclax
 - low-dose cytarabine + venetoclax

Appropriate for non-intensive treatment approaches
- IDH1 mutation
- other AML
- IDH1 mutation
- other AML

Cahill et al, Advances in Oncology 2021
Treatment Approaches in Complete Remission

- **CR after intensive induction**
 - Consolidation therapy
 - Considerations for transplant if intermediate/high-risk disease
 - Consideration for CC-486 (oral azacitidine) after consolidation if intermediate/high-risk disease but not proceeding with transplant

- **CR after non-intensive approach**
 - Continue cycles of therapy indefinitely, dose adjustments may be considered
Emerging Treatment Strategies

- Intensive induction combination therapies
 - Venetoclax
 - Ivosidenib
 - Enasidenib
 - Gilteritinib

- Non-intensive combination therapies
 - HMA + Ven + FLT3 inhibitors
 - HMA + Ven + IDH Inhibitors

- Oral regimens in AML

- Therapies in TP53-mutated AML

*under clinical investigation but not yet FDA-approved!
FLAG-Ida + Venetoclax in New AML and R/R AML

<table>
<thead>
<tr>
<th>Outcome</th>
<th>All (N = 68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, No. (% [CI])</td>
<td>56 (82 [71 to 91])</td>
</tr>
<tr>
<td>CRc (CR + CRi + CRh), No. (% [95% CI])</td>
<td>52 (76 [65 to 86])</td>
</tr>
<tr>
<td>CR, No. (%)</td>
<td>37 (53)</td>
</tr>
<tr>
<td>CRh, No. (%)</td>
<td>10 (15)</td>
</tr>
<tr>
<td>CRi, No. (%)</td>
<td>5 (7)</td>
</tr>
<tr>
<td>MRD⁻ CR (flow cytometry), No. (% [95% CI])</td>
<td>43 (83 [70 to 92])</td>
</tr>
<tr>
<td>MLFS</td>
<td>4</td>
</tr>
<tr>
<td>No response</td>
<td>12</td>
</tr>
<tr>
<td>DOR (median, months)</td>
<td>NR</td>
</tr>
<tr>
<td>EFS</td>
<td>18 (10.1 to NE)</td>
</tr>
<tr>
<td>Median, months (95% CI)</td>
<td>18 (10.1 to NE)</td>
</tr>
<tr>
<td>6-month, % (95% CI)</td>
<td>70 (59 to 81)</td>
</tr>
<tr>
<td>12-month, % (95% CI)</td>
<td>56 (44 to 71)</td>
</tr>
<tr>
<td>OS</td>
<td>NR</td>
</tr>
<tr>
<td>Median, months (95% CI)</td>
<td>NR</td>
</tr>
<tr>
<td>6-month, % (95% CI)</td>
<td>81 (71 to 91)</td>
</tr>
<tr>
<td>12-month, % (95% CI)</td>
<td>70 (58 to 83)</td>
</tr>
</tbody>
</table>
IDH Inhibition + Intensive Induction Chemotherapy in Newly-Diagnosed *IDH*-mutated AML

Ivosidenib or Enasidenib Combined with Intensive Chemotherapy in Newly Diagnosed AML

Induction (1-2 cycles)
- Continuous IVO 500 mg QD
- Continuous ENA 100 mg QD

Consolidation (≤ 4 cycles)
- Continuous IVO 500 mg QD
- Continuous ENA 100 mg QD

Maintenance*
- Continuous IVO 500 mg QD
- Continuous ENA 100 mg QD

*Until relapse, development of unacceptable toxicity, or allogeneic HSCT

Best Response at Any Time

Stein et al, Blood 2021
Gilteritinib + Intensive Induction Chemotherapy in Newly-diagnosed *FLT3*-mutated AML

Table 2. Clinical Response to Gilteritinib in Combination with 7+3 Induction and Consolidation Chemotherapy at the End-of-Induction Time Point in *FLT3*mut⁺ Patients with Newly Diagnosed AML Who Received Gilteritinib 120 mg/d

<table>
<thead>
<tr>
<th>Response Parameter, a n (%)</th>
<th>FLT3mut⁺ Patients who Received 120 mg/d (N=38)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>15 (39.5)</td>
</tr>
<tr>
<td>CRp</td>
<td>1 (2.6)</td>
</tr>
<tr>
<td>CRi</td>
<td>15 (39.5)</td>
</tr>
<tr>
<td>CRc</td>
<td>31 (81.6)</td>
</tr>
</tbody>
</table>
Select HMA+ Venetoclax Triplet Therapies in Trials

<table>
<thead>
<tr>
<th>Drug Added</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilteritinib</td>
<td>FLT3</td>
</tr>
<tr>
<td>Quizartinib</td>
<td>FLT3</td>
</tr>
<tr>
<td>Ivosidenib</td>
<td>IDH1</td>
</tr>
<tr>
<td>Enasidenib</td>
<td>IDH2</td>
</tr>
</tbody>
</table>
Decitabine-Cedazuridine and Oral Combinations

Investigational agent(s)	**Patient population**	**Trial number**
ASTX030 | MDS, CMML, AML | NCT04256317
ASTX030 | MDS | NCT04608110
ASTX727 | Lower-risk MDS | NCT03502668, NCT03906695
ASTX727 | MDS with detectable MRD after allo-HCT | NCT04742634
ASTX727 + itacitinib, INCB053914, or INCB059872 | MDS/MPN overlap syndromes | NCT04061421
ASTX727 + venetoclax | MDS, CMML | NCT04655755
ASTX727 + venetoclax | AML | NCT04657081, NCT04746235
ASTX727 + venetoclax + ivosidenib orenasidenib | IDH1 or IDH2-mutated AML | NCT04774393
ASTX727 + ASTX660 | AML | NCT04155580
Immunotherapy in AML
Pembrolizumab in R/R AML

38% CR Rate
Novel Therapies in *TP53*-mutated AML

Table 1. Clinical trials in *TP53* myeloid malignancies.

<table>
<thead>
<tr>
<th>Treatments (NCI Number)</th>
<th>Phase</th>
<th>Number of Patients</th>
<th>Overall Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZA + VEN NCT04401748</td>
<td>3</td>
<td>431 AML patients total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>286 (AZA + VEN) (23% TP53 mutated)</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>145 (AZA + Placebo) (16% TP53 mutated)</td>
<td>0%</td>
</tr>
<tr>
<td>AZA + Eprenetapopt NCT03072040</td>
<td>1b/2</td>
<td>55 TP53 mutated MDS/AML patients</td>
<td>71%</td>
</tr>
<tr>
<td>AZA + Eprenetapopt NCT03588078</td>
<td>2</td>
<td>52 TP53 mutated MDS/AML patients</td>
<td>62%</td>
</tr>
<tr>
<td>AZA + MAGRO NCT03248479</td>
<td>1b</td>
<td>29 TP53 mutated AML patients</td>
<td>59%</td>
</tr>
</tbody>
</table>

Table 2. Clinical trials ongoing in *TP53* myeloid malignancies.

<table>
<thead>
<tr>
<th>Treatments (NCI Number)</th>
<th>Phase</th>
<th>Number of Patients</th>
<th>Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENHANCE-2</td>
<td>3</td>
<td>346 TP53 mutated AML patients to be randomized</td>
<td>OS</td>
</tr>
<tr>
<td>AZA + MAGRO vs. AZA + VEN NCT04778397</td>
<td>3</td>
<td>154 TP53 mutated MDS patients included</td>
<td>CR</td>
</tr>
<tr>
<td>AZA + Placebo vs. AZA + Eprenetapopt NCT03745716</td>
<td>3</td>
<td>51 TP53 mutated AML patients</td>
<td>Safety</td>
</tr>
<tr>
<td>AZA + VEN + Eprenetapopt NCT04214860</td>
<td>1</td>
<td>100 TP53 mutated AML patients</td>
<td>RFS</td>
</tr>
<tr>
<td>DAC + Cytarabine + ATO NCT03381781</td>
<td>2</td>
<td>33 TP53 MDS/MAL patients included</td>
<td>RFS</td>
</tr>
</tbody>
</table>
Summary

• Since 2017 there have been a number of newly-approved therapies for AML

• Current treatment considerations should factor in disease characteristics and patient characteristics

• Novel treatment strategies include:
 • Combination approaches of FDA-approved drugs
 • All oral regimens
 • Immunotherapy
 • Approaches specific to TP53-mutated AML
Thank you!