Advances in the Treatments of Blood Cancers

Robert Eisner D.O.
Northwestern Medicine Central Dupage Hospital
Warrenville Cancer Center
Normal Blood Production

- Multipotential hematopoietic stem cell (Hemocytoblast)

 - Common myeloid progenitor
 - Erythrocyte
 - Mast cell
 - Myeloblast
 - Megakaryocyte
 - Thrombocytes
 - Basophil
 - Neutrophil
 - Eosinophil
 - Monocyte
 - Macrophage
 - Dendritic cell

 - Common lymphoid progenitor
 - Natural killer cell (Large granular lymphocyte)
 - Small lymphocyte
 - T lymphocyte
 - B lymphocyte
 - Plasma cell
Origins of Blood Cancer

- Splenic marginal-zone lymphoma
- DLBCL (ABC-type)
 - Primary mediastinal B-cell lymphoma
- Memory B cell
- B-CLL
- Hairy-cell leukaemia
 - Prolymphocytic leukaemia
- MALT lymphoma
- Multiple myeloma
- Germinal centre
- GC B cell
- Naive B cell
- Naive B cell
- B-CLL (unmutated V gene)
- Follicular lymphoma
 - Burkitt's lymphoma
 - DLBCL (GC-type)
 - Lymphocyte-predominant Hodgkin's lymphoma
- Classical Hodgkin's lymphoma
- Post-transplant lymphomas
- Mantle zone
- Plasmablast
- Plasma cell
- Mantle-cell lymphoma
 - B-CLL (unmutated V-region genes)
- Lymphoplasmacytic lymphoma
 - Primary effusion lymphoma

Northwestern Medicine
Evolving Treatment of Hematologic Malignancy

1949: Methotrexate, Nitrogen mustard
1953: MOPP
1963: Doxorubicin, Vincristine
1975: CHOP
1978: VP-16
1983: ABVD
1997: Autologous stem-cell transplant, Cisplatinum, Rituximab, BEACOPP
1998: Dose-escalated BEACOPP
1999: R-CHOP, 2-CDA
2002: Lenalidomide, Vorinostat
2003: Everolimus, Bortezomib
2005: Pralatrexate, Romidepsin
2007: Bendamustine
2009: Brentuximab vedotin
2011: Ibrutinib
2013: Venetoclax, Copanlisib
2014: Nivolumab
2016: Tisagenlecleucel (CAR T cell)
2017: Axicabtagene ciloleucel (CAR T cell)
2018: Pembrolizumab

Era of chemotherapy
Era of targeted therapy
Immune therapies
Myeloma Success Story

History
- 1945: First documented case
- 1890: Description of plasma cells
- 1928: First large case series of myeloma
- 1958: Serum protein spike identified
- 1966: Light chain types (later termed kappa and lambda) recognized
- 1985: International staging system
- 1840: First documented case
- 1850: Abnormal urine protein, later termed Bence Jones protein
- 1890: Description of plasma cells
- 1928: First large case series of myeloma
- 1958: Serum protein spike identified
- 1966: Light chain types (later termed kappa and lambda) recognized
- 1985: International staging system

Treatment
- 1847: Urothene (N. Alawi)
- 1847: Methotrexate (N. Blokhin)
- 1950: Corticosteroids (R. E. Mass)
- 1950: Thalidomide (S. Singhal and B. Barlogie)
- 1992: Bortezomib (R. Z. Orlowski)
- 2002: Lenalidomide (P. G. Richardson and K. C. Anderson)

Blood. 2008 Mar 15; 111(6)2962-2972
Era of Chemotherapy

• Nitrogen mustard used in chemical warfare in WW I
• Induced bone marrow aplasia
• Developed to treat blood cancer
 – Tumors shrunk
 – Tumors grew back promptly
 – Would shrink again if given another dose (introduced the cycle concept)
• First chemotherapy drug in 1940’s
Mechanism of Chemotherapy

- Induces cell death by damaging DNA
 - Stops the ability of the cells to divide

- More active against cells that are rapidly dividing

- Unfortunately, also toxic to healthy normal cells

- Associated with a range of toxicities
 - Bone marrow suppression
 - Nausea and vomiting
 - Sore mouth and diarrhea
 - Tingling and numbness in hands and feet
 - Cardiac damage
 - Lung damage
 - Kidney damage
 - Risk of leukemia
Era of Chemotherapy

• Proof of Concept:
 – Methotrexate
 • First drug to treat pediatric ALL in 1948
 • Cured choriocarcinoma 1958
 • First solid tumor to be cured by chemotherapy
 – Resistance to chemotherapy develops
 – Most solid tumors are not curable with standard chemotherapy
What If We Just Increase the Dose?

Autologous Stem Cell Transplantation

- Higher doses of chemotherapy kills more cancer cells
- Too high a dose could harm the patient
- Toxicity to normal cells limits dose of chemotherapy
- Toxicity limits effectiveness of treatments

- Rational for high dose chemotherapy with stem cell rescue
Newer Agents and Combinations Developed

• Combinations of drugs with non-overlapping toxicities combined to try to cure cancer
 – R-CHOP
 – DA R-EPOCH
 – Hyper CVAD
 – PROMACE CYTOBOM
 – RICE
 – R-GDP
 – Etc...

Northwestern Medicine
Era of Targeted Therapy

- Better understanding of cancer biology
- Identification driver mutations which are responsible for cell proliferation
- Drugs designed to specifically inhibit the critical pathways
 - Blocking antibodies
 - Trastuzumab in Her2 + breast cancer
 - Rituximab in NHL
 - Small molecules (TKI)
 - Gleevec in CML
 - Erlotinib in EGFR mutated lung cancer
- Birth of precision medicine
Era of Targeted Therapy: Proof of Concept

• CML was once universally fatal
 – Only curative treatment was allogeneic stem cell transplant
 – Allo transplant has a lot or risks
 • Immunosuppression
 • GVHD
 • Infections

• Discovery
 – CML is defined by BCR/ABL gene
 – Imatinib designed to precisely inhibits enzymes causing fusion gene
 – Controls the disease with minimal side effect
 – Bone marrow transplant no longer necessary in most cases
 – Disease easily controlled in most cases
New Paradigm

- Response rate in phase I trial was 90%
- Approved by FDA in 2001
- Revolutionized the paradigm of drug discovery
How Do We Identify the Targets?

- Cytogenetics
- PCR
- FISH
- Next generation sequencing
- Accelerated pace of discovery
- Shorter time from bench to bedside
• PROBLEM
 – Cancers all look the same under the microscope
 – Biologic behavior is not the same
 – Tumors are heterogeneous and evolve over time
 – There is no single driver mutation in most cancer cells
 – CML model did not translate into other cancer “cures”
Understanding Cancer Biology Yields New Treatments
Newer Targeted Therapies in AML

History of FDA Approved AML Therapy

1973 Cytarabine/Daunorubicin (7+3)

1977 First BM transplant

May 2000 Gemtuzumab ozogamicin

May 2002 Idarubicin

Jun. 2010 Gemtuzumab ozogamicin withdrawn

Aug./Sep. 2017 Gemtuzumab ozogamicin (returned), CPX-351, Enasidenib

Nov. 2018 Gilteritinib, Venetoclax, Glasdegib

Sep. 2020 Azacitidine (maintenance)
Era of Immunotherapy: T cell Immuno-oncology

EMPOWERING THE IMMUNE SYSTEM TO FIGHT CANCER

Effector T-cell mechanisms

<table>
<thead>
<tr>
<th>Activating</th>
<th>Inhibitory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICOS</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>Oncolytic viruses</td>
<td>PD-1</td>
</tr>
<tr>
<td>LAG-3</td>
<td></td>
</tr>
<tr>
<td>TIGIT*</td>
<td></td>
</tr>
<tr>
<td>TIM-3</td>
<td></td>
</tr>
</tbody>
</table>

Non-effector cell mechanisms

<table>
<thead>
<tr>
<th>Activating</th>
<th>Inhibitory</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLRP3</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>STING</td>
<td>CCR2/5</td>
</tr>
<tr>
<td>CD73</td>
<td>IL-8</td>
</tr>
<tr>
<td>CSF1R</td>
<td>TGFR</td>
</tr>
</tbody>
</table>

NK-cell mechanisms

<table>
<thead>
<tr>
<th>Activating</th>
<th>Inhibitory</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAMF7</td>
<td>KIR</td>
</tr>
</tbody>
</table>

Ongoing Immuno-Oncology research focuses on these pathways, either alone or in combination, to understand how they can be modulated to restore the body’s natural ability to fight cancer.

*Pathways are listed by primary mechanism. Secondary mechanisms may exist. APC=antigen-presenting cell; CCR2/5=chemokine (C-C motif) receptors 2/5; CSF1R=colony-stimulating factor-1 receptor; CTLA-4=cytotoxic T-lymphocyte antigen 4; EP4=prostaglandin E2 receptor 4; ICOS=inducible T-cell co-stimulator; IDO1=indoleamine 2,3-dioxygenase-1; IL-8=interleukin-8; KIR=killer cell immunoglobulin-like receptor; LAG-3=lymphocyte-activation gene 3; NLRP3=nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3; NK=natural killer; PD-1=programmed death receptor-1; SLAMF7=signalling lymphocytic activation molecule family member 7; TGFR=transforming growth factor beta receptor; TIGIT=T-cell immunoreceptor with Ig and TIM domains; TIM-3=T-cell immunoglobulin mucin-3.
Mechanism of Action: CTLA4 and PD1 Antibodies
Widespread Use of PD1 Inhibitors

Source: U.S. FDA, IQVIA, National Sales Perspectives, Feb 2018; IQVIA Institute, Apr 2018
Notes: Met = metastatic; rec/met = recurrent/metastatic; 1L+ = 1st line; 2L+ = 2nd line; HCC = hepatocellular carcinoma.
Immune Mediated Adverse Events: “The Itises”

• GI
 – Hepatitis
 – Colitis
 – Pancreatitis
• Pulmonary
• Endocrine
 – Thyroiditis
 – Hypophysitis
 – Hyperglycemia/DM
 – Adrenalitis
• Dermatitis
 – Maculopapular rash
 – Pruritis
 – Blistering
• Cardiac
 – Myocarditis
 – Pericarditis
 – Decreased LV function
• Nephritis
• Neurologic:
 – Myasthenia Gravis
 – Transverse myelitis
 – Encephalitis
 – Peripheral neuropathy
 – Aseptic meningitis
• Ocular toxicity
• Musculoskeletal
 – Inflammatory arthritis
 – Myalgia/myositis
Bi-specific T cell Engaging Antibodies

Engineering an Adapter From Two Monoclonal Antibodies

BiTE® = Bispecific T Cell Engager

- Blinatumomab enables CD3-positive T cells to recognize and eliminate CD19-positive acute lymphoblastic leukemia (ALL) blasts
- Approved for use in patients with relapsed or refractory B-cell precursor ALL
- Scientist are working developing Bites with many different cancer types.
CAR T Therapy

- T cells are engineered to recognize cancer antigens
 - CD 19 targeting in B cell lymphoma and ALL
 - BCMA targeting in multiple myeloma
- Maybe a curative approach in some cases
- Can be used in patients unfit for stem cell transplant
- Can work with chemo refractory disease

Limitations
- Performed in specialized center with experience in cellular therapies
- Extreme cost
- Limited production capacity of commercial CAR-T products
- Timing is everything when cancer is aggressive
Why don’t we cure more cases of cancer: MRD

- “The surgeon got it all”
- “Your PET scan shows you have a complete remission”
Testing for Minimal Residual Disease

• MRD tests detect traces of tumor cells which were previously undetectable
• May be predictive of better outcomes
• Potential to avoid additional toxic therapies
 – Avoiding stem cell transplant
 – Stopping maintenance therapy
 – Predict which patients need more intensive treatment in 1st remission
• Under investigation in a variety of cancers
Where do we go next?